SYNTOMIC COHOMOLOGY OF Z AND 7/
PRESTON CRANFORD

ABSTRACT. These are notes for Talk 4.4 of Talbot 2024 that I delivered. We calculate the
mod (p, v1) syntomic cohomology of Z,) and the mod (p, v1, v) syntomic cohomology of £7).
Then we discuss features of these calculations including Tate duality, collapsing Bockstein
spectral sequence, and Lichtenbaum—Quillen conjecture.

In this talk we calculate the (p, vy, v2) syntomic cohomology of E;,\. Then we discuss three
features of the calculation: Tate duality, collapsing of vs-Bockstein spectral sequence, and
satisfaction of the Lichtenbaum—Quillen conjecture.

Fix a prime p. Let ¢ denote the Adams summand 62, the ring spectrum with its usual
E-structure.

Before we calculate the (p, v, v2) syntomic cohomology of £7), we start by defining syn-
tomic cohomology of suitable E.-rings, chromatically p-quasisyntomic E..-rings. For the
statement of the definition we recall the following definition.

Definition 1. [HRW, Section 1] For R a chromatically p-quasisyntomic Ey-ring, the syn-
tomic cohomology of R is the associated graded of fil ot TC(R)Q = filey p e THH(R)Q.

Now that we have defined syntomic cohomology of chromatically p-quasisyntomic E..-
rings, we define mod (p,vy,...,v,) syntomic cohomology to be the mod (p,vy,...,v,) re-
duction of syntomic cohomology.

Recalling from a previous talk that EQ is chromatically p-quasisyntomic, we now begin
calculating its mod (p, vy, v2) syntomic cohomology. Since we've already calculated what the
canonical map

(28 TCT(0)) /(P v1,v2) — (8250 TP(0)) /(p, 01, v2)

looks like on the level of homotopy groups in Talk 4.3, it only remains to understand
what the Frobenius map is on the level of homotopy groups. The main idea of the proof is
to show that the mod (p, vy, v9) Frobenius

(grltlotTci (6)) /(pa (%0 UQ) i> (gr:notTP<€)) /(p7 U1, U2)
is given by the mod (p,v;) Frobenius

(THH(0)) /(p, v1) = (THH(E)*") /(p,v1)

as we recall now.

Lemma 2 (Talk 4.1). The mod (p,v1,. .., v,) Frobenius map 7. (THH(BP(n)) ®ppum Fp) =
7. (THH(BP(n))'» @ppm F,) is identified with the ring map

A()\b )\27 ey An) ® IFP[H’] — A()\la >\27 ceey )\n) X Fp[ﬂil]

that inverts the class .
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Now that we’ve recalled Lemma 2 just for the case n = 1, so that BP(n) = {, we are
ready to compute the mod (p, vy, vy) Frobenius in Lemma 3.

Lemma 3. [HRW, Corollary 6.6.1] In terms of the isomorphisms

(215 TCT(0)) /(P 01, v2) T, 1] /(17" 1) @ ANy, N)
® T {t" N\, t7 g, t M\ Mg, 79N g | 0 < d < p},
(2rto TP(0)) /(p, v1,v2) = F[t57°] @ A(Mr, Ag)

calculated in a previous talk, the Frobenius is trivial on classes not of the form X! Ay u* where
k>0 and e, e; € {0,1} and sends each class of the form AP A3 u* to an 7 multiple of the

)
class named N \3*t Pk,

Proof. Consider the diagram

TC™ () —Z— TP(/)
THH(¢) —— THH(()'Cr

with the left vertical arrow given by the unit map. The diagram commutes by the Tate
orbit lemma. Modding out by (p,v;) gives the commuting diagram

(TC(6)) /(p,v1) — (TP(0)) /(p, v1)

! |

(THH(()) /(p, v1) —— (THH(0)'%) /(p,v1).

Since we understand the Frobenius bottom horizontal map, we have an opportunity
to understand the Frobenius top horizontal map. Using that the Frobenius preserves the
motivic filtration as stated in the following black-boxed lemma:

Lemma 4. [HRW, Theorem 1.3.6] Let R be a chromatically quasisyntomic E-ring. Then,
for each prime number p, the Nikolaus—Scholze Frobenius

Y TC_(R);\ — TP(R);\
refines to a natural map

o < fil%,, TC™(R)) — fil%,, TP(R)).

mot mot

The same is true of the canonical map between the same objects, and fil,  TC(R), can be
computed as the equalizer of the filtered Frobenius and canonical maps.

and taking appropriate reductions, we would get the following commutative diagram

(152 TC™(0)) /(p,01) —=— (885t TP(0) /(p, v1)

(8110t THH(O)) /(p, v1) — (8150 THH(0)'") /(p, v1).

We argue that the above diagram factors through one of the form
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(grfnot TC_(€>) /(p7 U1, U2) L) (gr;knotTP(g)) /(p7 U1, 02)

ls |

(810 THH(E)) / (p,v1) —— (gr3o THH(0)) /(p, v1).

mot

Note that vy = 0 in (grs, ) /(p, v1), so the sequence of algebra maps
grr 0 — grt  THH(() 5 gr*  THH(()'Cr

mot mot

imply that v = 0 in (gr* THH(g)th) /(p,v1). Thus, the natural map

mot

8t TP(0)/ (P, v1) = grhoe THH(E) " /(p, v1)

mot mot

factors over a map
9+ 8ot TP(0)/ (9, v1,v2) = @l THH(O) /(p, v1).

Now that we have the Frobenius map we wish to understand in a commuting diagram
with a Frobenius map we understand, we now start studying it. We leave the proof of g
being an isomorphism to the next Lemma 5. The map f is trivial on every class not of the
form A A\Zpk. Lemma 2 and g is an isomorphism (Lemma 5) imply that each class of the
form A{" A3 * has non-trivial Frobenius image. The only non-trivial classes in the codomain
in the same degree as A{* A3, are F)* multiples of the class named Af' Azt Pk O]

The above proof is complete except for the justification of the map ¢ being an isomor-
phism. We justify this now.

Lemma 5. [HRW, Theorem 6.4.1] The map g above is an isomorphism

(88500 TP(0)) / (P, 01, 02) = (grhoy THH(0)') /(p, v1)

Proof. We can compute the motivic associated graded for TP(¢) via the cobar complex
associated to the descent

TP({) — TP(¢/MU)
with sth term given by 7, TP(¢/MU*™!). The domain of g is calculated by the complex
obtained from modding out each term 7, TP(¢/MU®*™) by p,v; and v,. The codomain is
obtained from the complex 7, THH(¢/MU®*™1)tCr by levelwise killing p and v;. We first note
that, for each value of s > 0, v, = 0 in (7, THH(¢/ MU®*"")%) /(p,v;). This can be seen
from the existence of the relative cyclotomic Frobenius map

o, THH((/MU®) /(p,v1) — 7, THH(¢/ MU®HCr /(p_0)),

because v, = 0 modulo (p,v;) in any m,/-algebra such as m, THH(¢/MW®*t!). It follows
that g extends to a map of cobar complexes which levelwise is of the form

gs + (mTP(¢/ MU®*™)) /(p, v1,v0) — (m THH(E/ MUY /(pvy).

To prove that ¢ is an isomorphism, we will prove the stronger claim that ¢, is an iso-
morphism for each s > 0. To see that each g, is an isomorphism we first use Lemma
6 below to see that the group (m. THH(¢/MU®™)t) /(p,v1,v5) can be computed from
(m TP(¢/ MU®**Y)) /(p,v1) by killing [p](¢) for any complex orientation ¢.
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Lemma 6. [HRW, Lemma 6.4.2] Let M € Modﬁ% be an S'-equivariant MU-module. Then
the map

M J[pl(t) = M*S' @, MUCr — MO
is an equivalence. In particular for (m, THH(¢/ MU 1)) /(p,vy) € Modf/ﬁ}, we have an
equivalence

(m. THH(L) MU®*THC) /(p, v;) = ((mTHH(ﬁ/ M U‘X’S“)“l) /(p; vl)) /([p](¢))

Proof. We argue exactly as in [NS, IV.4.12]. Since MU' = MU®™' /[p](¢) is a perfect MU' -
module as seen in the following sequence

MU — MU' B0, \ st

the functor (—) ®, st MU commutes with all limits and colimits. Using the equiva-
lences M'¢ = colim(75,M)'“ and M = lim(r<,M)'® for G = C,, it is sufficient to assume
that M is bounded. By filtering M by its Postnikov filtration it is sufficient to assume that
M is discrete. For M is discrete then its Sl-action is trivial because

Fun(BS*, Aut(M)) = Fun(BS", Aut(mo(M))
and BS! is connected. Now that we've reduced to the discrete S'-action case, we show
for M with a trivial S'-action that

M J[pl(t) = M @, MUCr — MO

as desired. Since M has a trivial S'-action we have that A" = ABS'. Since M has
a trivial S'-action, M has a trivial C,-action, so likewise A"“» = ABC% . Consider the fiber
sequence

dor

S' — BC, — BS' =47 BSY,
of spaces. Dualizing and lifting to spectra gives a cofiber (=fiber) sequence
Y*BC, — X*°BS' — (BSH.
Homming from M then determines a fiber (=cofiber) sequence
MBCp i MBSl «— M(B,S'l)/\.

Because M is a MU-module, there is a Thom isomorphism M®5)" o $-2)7B5" Note
that

(BSH)" = cofib(S(V) — D(V))
and D(V') = CP*. Finally, the map

E_2MBS1 N MBCp
can be identified with the map M[[t]] — M][[t]] sending 1 to the Euler characteristic p[t].
This proves

M J[p(£) = M"S' @, r MUMC> — MHC»
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is an equivalence, and the analogous statement with tS' and tC, in place of hS' and
tC), respectively, follows from inverting ¢.

O
We finish by using the black-boxed Lemma 7
Lemma 7. [HRW, Section 6] We have that vy is a unit multiple of [p](t).

Finally knowing that vy = ¢p[t](¢) for a unit ¢ allows us to conclude that

((mrHE(/ MUSE) fp,v0)) /([p)0) = ((m THE( MUS)SY) f(p,00)) f(evs)
= ((mrHHE/ MUY /(p,01)) /(02)

— ((mTHEE/ MUSYS) f(p, 0y, 0))
as desired. -

Now that we know the Frobenius, we are ready for the syntomic cohomology calculation.

Theorem 8. [HRW, Theorem 6.0.4] The mod (p, v1,vs) syntomic cohomology of £ is a finite
[F,-vector space. As a vector space, it is isomorphic to
(1) F {1}, in Adams weight 0 and degree 0.
(2) Fp{0, 1\, t% Xy | 0 < d < p}, in Adams weight 1. Here, |0| = —1, |t)\| = 2p—2d —
1, and [t%\o| = 2p* — 2dp — 1.
(3) Fp{tIAi Ao, %A1 X9, 0N, 009 | 0 < d < p}, in Adams weight 2. Here, [t?A\)g| =
2p2 —2p —2d — 2, [P A Mg = 2p% —2p —2dp — 2, |ON1]| = 2p — 2, and |OXy| = 2p* — 2.
(4) F,{OM A2}, in Adams weight 3 and degree 2p* + 2p — 3.

The mod (2, vy, v3)-syntomic cohomology of ¢ = ku

3 OM g @
2 OAre M Aate  Adge
1 [(0e Aite ﬁfﬁ' Ay @
0 le
-1 0 1 2 3 4 5 6 7 8 9 10

Proof. By definition of TC, we have the fiber sequence

TC(¢) — TC(¢) =5 TP(¢),

and since the motivic filtration preserving the fiber sequence, we have a fiber sequence

(p—can

grr TCW) — grr . TCT(0) —— grpot *TP(L).

mot
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By taking appropriate reductions, we have the induced fiber sequence

mot TC(K)/(]% U1, UQ) - grmot TC_<£)/(p’ U1, UQ) m) mot TP<€)/(p7 U1, UQ)'

which induces a long exact sequence
C gr:‘noi TP(£>/<p7 U1, UQ) — grmot TC(€>/<]?, U1, 1)2)
TP(0)/(p,vi,v2) = -+

of groups which we will use to deduce the result. The map

— grmot TC_(E)/(pa U1, UQ) ﬂ gr

mot

mot TC™ (6)/(])7 U1, UQ) ﬂ gr rnot TP(K)/(Z% U1, UQ)
is given by the rule that classes of the form A A\2t%7° € grt  TC™(¢)/(p,v1,v2) go to
— X2 e grr TP(4)/(p, Ul,Ug) classes of the form A{*\3?tu* € gri  TC™(£)/(p, v, vo)
go to a F)-multiple of AT \5*t~ LS gri  TP(0)/(p,v1,v2), and all other classes go to zero.
The kernel of this map gives the terms in the syntomic cohomology calculation that don’t
have )\;’s in them. The cokernel is given by

gt TP(O)/(p,v1,v2) T[] @ A(Ar, Ao)

I

A(M, \a).

im(¢ — can) F,[t"]

This contributes the basis elements with a 0 coming from the degree shift.
O

Now we discuss three consequences of the syntomic cohomology calculation. The first is
the following.

Proposition 9. [HRW, Theorem 6.0.4] The vy-Bockstein spectral sequence (converging to
the mod (p,v1) syntomic cohomology of € as an F,vs]-module) collapses with no differentials.
As a consequence, we've calculated grr . (TC(L)) /(p,v1) as an Fyvs]-vector space.

Proof. Recall that the vo-Bockstein spectral sequence (converging to the mod (p, v1) syntomic
cohomology of ¢ as an F,[vs]-module) has signature

e (97 inor (TC()) /(s 01)) / (v2)) [0a] = (97701 (TC(L)) / (P, v1))

which can be rewritten as

T (9T mot (TC(E)) /(p; 01, 02)) [v2] = (9701 (TC(0)) /(P 01))

due to regularity. Since we know gr’ . (TC(¢)) /(p,v1,ve) and that |vs| = (2p* —2,0) we
have the following description of the F; page of the spectral sequence.
We have 7, . (975 (TC(0)) /(p,v1,v2)) [ve] as an [F,, vector space isomorphic to

(1) Fy{vs | 0 < d < p,e >0}, in Adams weight 0 and degree (2p* — p)e.

(2) Fo{vsd, vst?A\;,v5t%Xy | 0 < d < p,e > 0}, in Adams weight 1. Here, |0| = —
[t | = 2p — 2d — 1, and [t%)\y| = 2p? — 2dp — 1.

(3) Fp{vstIh Ao, v5tP A1 Ag, 050N, 050N | 0 < d < p,e > 0}, in Adams weight 2. Here,
[t o] = 2p? — 2p — 2d — 2, [tPA o] = 2p? — 2p — 2dp — 2, |ON1] = 2p — 2, and
|8)\2 = 2p2 — 2.

(4) F{vs0AAg, e > 0}, in Adams weight 3 and degree 2p* + 2p — 3.
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We argue that there are no non-trivial differentials. In a Bockstein spectral sequence, the
differentials are trigraded. The differentials increase Adams weight by 1 and must increase
vo-degree by a positive amount. Differentials increase vo-degree by at least 1, Adams weight
by 1, and degree by —1. Any differential increasing vs-degree by b > 1 maps vz to v5 22,
for some a > 0 and 1, 5 having no factor of v, where deg(v5™x,) — deg(v§x;) = —1. This
implies deg(zq) —deg(z1) = b(2p* —2) — 1. Thus b < 2 since the maximum deg(zz) — deg(z1)
that can occur is 2p* — 2. Since deg(z) — deg(x;) = 2p® — 1 cannot occur, b cannot be 1, so
we conclude that all differentials collapse. 0

The Ei-page of the vy-Bockstein spectral sequence for p = 2

3 0Nz e

2 O\ ® Ag}fﬁ A )ote Ay @

Ljoe e A mpe vife mdtleap,

0 le (o v3e
-1 0 1 2 3 4 ) 6 7 8 9 10 11 12

Now that we’ve stated the first observation, we state the second.

Proposition 10. The syntomic cohomology calculation exhibits something that looks like
Tate duality.

Now that we’ve stated the first observation, we state the third.

Proposition 11. [HRW, Corollary 6.6.3] For any prime p > 2 and type 3 p-local finite
complex F', F,TC({) is finite.

Proof. Let C denote the category of p-complete finite spectra V' such that V,TC({) is finite.
See that C'is a thick subcategory of p-complete finite spectra: it contains 0 because 0, TC(¥)
is finite, it’s closed under fibers and cofibers by observing the long exact sequence associated
to a fiber or cofiber sequence, and retraction preserves tensoring with TC(¢) thus will preserve
finiteness.

By the Thick Subcategory Theorem, C' must be Cs, for some n > 0, the category
of finite p-local spectra of type > n. Fix (i, j, k) so that the generalized Moore spectrum
V :=S/(p',vl,vk) of type 3. If we show that V € Cs,, it follows that k& < 3 in which case
Cs3 C C, that is, the proposition would be proven.

We show that V,TC(¢) is finite for V the type 3 complex S/(p*,v], v%). Note that (i, j, k)
have been picked so that there is a motivic spectral sequence with signature

800 (TC(0) /(0,01 v5) = V.TC()

Now we see gr’,  (TC(€))/(p', v], v5) may be resolved by finitely many copies of gr* . (TC(£))/(p, v1, vs)

mot mot

in the following way. We inductively, for 1 < m < i, exhibit the cofiber sequence
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800t (TC(0))/ (0", 01, 02) = 817060 (TC(0)) /(0" 01, 02) = 1300 (TC(0) /(0" 01, 02)
giving a cofiber sequence

S/(p™, v1,v2), TC) = S/(p™, v1,v2),TC) = S/ (p™ ™, v1,v2), TC(¥)
where the first two terms are finite by inductive hypothesis so that the final term is also

finite. Repeating this process for the powers of v; and v, completes the proof.
O

Finally we discuss the following corollary of the Proposition 11.

Corollary 12. [HRW, Theorem 6.6.4] The Litchenbaum-Quillen conjecture holds for TC(¢),
that is,

TC(0)) — L3TC(E) )
18 a Te-180 for x > 0.

Proof. Recall that the Lg—localization map S — Lg S fits into a cofiber sequence

C—S— LS

Such that C is a filtered colimit of objects of C>3. In the last Proposition 11, we proved
that the objects Cs3 coincides with the spectra v such that V,TC(¢) is finite, thus C' itself
has the property that C,TC({) is finite. Applying TC(¢), gives the fiber sequence

TC(¢) — LITC) — TC(0),V.

whose long exact sequence has TC(f) — L{TC(f) must be an equivalence in degrees
greater the highest degree appearing in TC(¢),V . O
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