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Abstract. These are notes for Talk 4.4 of Talbot 2024 that I delivered. We calculate the
mod (p, v1) syntomic cohomology of Z(p) and the mod (p, v1, v2) syntomic cohomology of ℓ∧p .
Then we discuss features of these calculations including Tate duality, collapsing Bockstein
spectral sequence, and Lichtenbaum–Quillen conjecture.

In this talk we calculate the (p, v1, v2) syntomic cohomology of ℓ∧p . Then we discuss three
features of the calculation: Tate duality, collapsing of v2-Bockstein spectral sequence, and
satisfaction of the Lichtenbaum–Quillen conjecture.

Fix a prime p. Let ℓ denote the Adams summand ℓ∧p , the ring spectrum with its usual
E∞-structure.

Before we calculate the (p, v1, v2) syntomic cohomology of ℓ∧p , we start by defining syn-
tomic cohomology of suitable E∞-rings, chromatically p-quasisyntomic E∞-rings. For the
statement of the definition we recall the following definition.

Definition 1. [HRW, Section 1] For R a chromatically p-quasisyntomic E∞-ring, the syn-
tomic cohomology of R is the associated graded of filmotTC(R)∧p = filev,p,TC THH(R)∧p .

Now that we have defined syntomic cohomology of chromatically p-quasisyntomic E∞-
rings, we define mod (p, v1, . . . , vn) syntomic cohomology to be the mod (p, v1, . . . , vn) re-
duction of syntomic cohomology.

Recalling from a previous talk that ℓ∧p is chromatically p-quasisyntomic, we now begin
calculating its mod (p, v1, v2) syntomic cohomology. Since we’ve already calculated what the
canonical map (

gr∗motTC
−(ℓ)

)
/(p, v1, v2)

”can”−−−→ (gr∗motTP(ℓ)) /(p, v1, v2)

looks like on the level of homotopy groups in Talk 4.3, it only remains to understand
what the Frobenius map is on the level of homotopy groups. The main idea of the proof is
to show that the mod (p, v1, v2) Frobenius(

gr∗motTC
−(ℓ)

)
/(p, v1, v2)

φ−→ (gr∗motTP(ℓ)) /(p, v1, v2)

is given by the mod (p, v1) Frobenius

(THH(ℓ)) /(p, v1)
φ−→

(
THH(ℓ)tCp

)
/(p, v1)

as we recall now.

Lemma 2 (Talk 4.1). The mod (p, v1, . . . , vn) Frobenius map π∗
(
THH(BP ⟨n⟩)⊗BP ⟨n⟩ Fp

) φ−→
π∗

(
THH(BP ⟨n⟩)tCp ⊗BP ⟨n⟩ Fp

)
is identified with the ring map

Λ(λ1, λ2, . . . , λn)⊗ Fp[µ]→ Λ(λ1, λ2, . . . , λn)⊗ Fp[µ
±1]

that inverts the class µ.
1
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Now that we’ve recalled Lemma 2 just for the case n = 1, so that BP ⟨n⟩ = ℓ, we are
ready to compute the mod (p, v1, v2) Frobenius in Lemma 3.

Lemma 3. [HRW, Corollary 6.6.1] In terms of the isomorphisms(
gr∗motTC

−(ℓ)
)
/(p, v1, v2) ∼= Fp[t

p2 , µ]/(tp
2

µ)⊗ Λ(λ1, λ2)

⊕ Fp{tdλ1, t
pdλ2, t

dλ1λ2, t
pdλ1λ2 | 0 < d < p},

(gr∗motTP(ℓ)) /(p, v1, v2)
∼= Fp[t

±p2 ]⊗ Λ(λ1, λ2)

calculated in a previous talk, the Frobenius is trivial on classes not of the form λϵ1
1 λ

ϵ2
2 µ

k where
k ≥ 0 and ϵ1, ϵ2 ∈ {0, 1} and sends each class of the form λϵ1

1 λ
ϵ2
2 µ

k to an F×
p multiple of the

class named λϵ1
1 λ

ϵ2
2 t

−p2k.

Proof. Consider the diagram

TC−(ℓ) TP(ℓ)

THH(ℓ) THH(ℓ)tCp

φ

φ

with the left vertical arrow given by the unit map. The diagram commutes by the Tate
orbit lemma. Modding out by (p, v1) gives the commuting diagram(

TC−(ℓ)
)
/(p, v1) (TP(ℓ)) /(p, v1)

(THH(ℓ)) /(p, v1)
(
THH(ℓ)tCp

)
/(p, v1).

φ

φ

Since we understand the Frobenius bottom horizontal map, we have an opportunity
to understand the Frobenius top horizontal map. Using that the Frobenius preserves the
motivic filtration as stated in the following black-boxed lemma:

Lemma 4. [HRW, Theorem 1.3.6] Let R be a chromatically quasisyntomic E∞-ring. Then,
for each prime number p, the Nikolaus–Scholze Frobenius

φ : TC−(R)∧p → TP(R)∧p

refines to a natural map

φ : fil⋆motTC
−(R)∧p → fil⋆motTP(R)∧p .

The same is true of the canonical map between the same objects, and fil⋆motTC(R)∧p can be
computed as the equalizer of the filtered Frobenius and canonical maps.

and taking appropriate reductions, we would get the following commutative diagram(
gr∗motTC

−(ℓ)
)
/(p, v1) (gr∗motTP(ℓ)) /(p, v1)

(gr∗motTHH(ℓ)) /(p, v1)
(
gr∗motTHH(ℓ)

tCp
)
/(p, v1).

φ

φ

We argue that the above diagram factors through one of the form
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(
gr⋆motTC

−(ℓ)
)
/(p, v1, v2) (gr∗motTP(ℓ)) /(p, v1, v2)

(gr∗motTHH(ℓ)) /(p, v1)
(
gr∗motTHH(ℓ)

tCp
)
/(p, v1).

φ

f g

φ

Note that v2 = 0 in (gr⋆ev ℓ) /(p, v1), so the sequence of algebra maps

gr⋆ev ℓ→ gr⋆motTHH(ℓ)
φ−→ gr⋆motTHH(ℓ)

tCp

imply that v2 = 0 in
(
gr⋆motTHH(ℓ)

tCp
)
/(p, v1). Thus, the natural map

gr⋆motTP(ℓ)/(p, v1)→ gr⋆motTHH(ℓ)
tCp/(p, v1)

factors over a map

g : gr⋆motTP(ℓ)/(p, v1, v2)→ gr⋆motTHH(ℓ)
tCp/(p, v1).

Now that we have the Frobenius map we wish to understand in a commuting diagram
with a Frobenius map we understand, we now start studying it. We leave the proof of g
being an isomorphism to the next Lemma 5. The map f is trivial on every class not of the
form λϵ1

1 λ
ϵ2
2 µ

k. Lemma 2 and g is an isomorphism (Lemma 5) imply that each class of the
form λϵ1

1 λ
ϵ2
2 µ

k has non-trivial Frobenius image. The only non-trivial classes in the codomain
in the same degree as λϵ1

1 λ
ϵ2
2 µ

k, are F×
p multiples of the class named λϵ1

1 λ
ϵ2
2 t

−p2k. □

The above proof is complete except for the justification of the map g being an isomor-
phism. We justify this now.

Lemma 5. [HRW, Theorem 6.4.1] The map g above is an isomorphism

(gr⋆motTP(ℓ)) /(p, v1, v2)
∼=−→

(
gr⋆motTHH(ℓ)

tCp
)
/(p, v1)

Proof. We can compute the motivic associated graded for TP(ℓ) via the cobar complex
associated to the descent

TP (ℓ)→ TP(ℓ/MU)

with sth term given by π∗TP(ℓ/MU s+1). The domain of g is calculated by the complex
obtained from modding out each term π∗TP(ℓ/MU⊗s+1) by p, v1 and v2. The codomain is
obtained from the complex π∗THH(ℓ/MU⊗•+1)tCp by levelwise killing p and v1. We first note
that, for each value of s ≥ 0, v2 = 0 in

(
π∗THH(ℓ/MU⊗s+1)tCp

)
/(p, v1). This can be seen

from the existence of the relative cyclotomic Frobenius map

π∗THH(ℓ/MU⊗s+1)/(p, v1)→ π∗THH(ℓ/MU⊗s+1)tCp/(p, v1),

because v2 ≡ 0 modulo (p, v1) in any π∗ℓ-algebra such as π∗THH(ℓ/MW⊗s+1). It follows
that g extends to a map of cobar complexes which levelwise is of the form

gs :
(
π∗TP(ℓ/MU⊗s+1)

)
/(p, v1, v2)→

(
π∗THH(ℓ/MU⊗s+1)tCp

)
/(p, v1).

To prove that g is an isomorphism, we will prove the stronger claim that gs is an iso-
morphism for each s ≥ 0. To see that each gs is an isomorphism we first use Lemma
6 below to see that the group

(
π∗THH(ℓ/MU⊗s+1)tCp

)
/(p, v1, v2) can be computed from(

π∗TP(ℓ/MU⊗s+1)
)
/(p, v1) by killing [p](t) for any complex orientation t.
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Lemma 6. [HRW, Lemma 6.4.2] Let M ∈ ModBS1

MU be an S1-equivariant MU-module. Then
the map

M tS1/[p](t) = M tS1 ⊗
MUtS1 MUtCp →M tCp

is an equivalence. In particular for
(
π∗THH(ℓ/MU⊗s+1)tCp

)
/(p, v1) ∈ ModBS1

MU , we have an
equivalence(

π∗THH(ℓ/MU⊗s+1)tCp
)
/(p, v1) ∼=

((
π∗THH(ℓ/MU⊗s+1)tS

1
)
/(p, v1)

)
/([p](t))

Proof. We argue exactly as in [NS, IV.4.12]. Since MUtCp = MUtS1/[p](t) is a perfect MUtS1-
module as seen in the following sequence

MUtCp → MUtS1 [p](t)−−→ MUtS1 ,

the functor (−)⊗
MUtS1 MUtCp commutes with all limits and colimits. Using the equiva-

lences M tG = colim(τ≥nM)tG and M tG = lim(τ≤nM)tG for G = Cp it is sufficient to assume
that M is bounded. By filtering M by its Postnikov filtration it is sufficient to assume that
M is discrete. For M is discrete then its S1-action is trivial because

Fun(BS1, Aut(M)) = Fun(BS1, Aut(π0(M))

and BS1 is connected. Now that we’ve reduced to the discrete S1-action case, we show
for M with a trivial S1-action that

M tS1/[p](t) = M tS1 ⊗
MUtS1 MUtCp →M tCp

as desired. Since M has a trivial S1-action we have that AhS1
= ABS1

. Since M has
a trivial S1-action, M has a trivial Cp-action, so likewise AhCp = ABCp . Consider the fiber
sequence

S1 → BCp → BS1 d→d⊗p

−−−−→ BS1.

of spaces. Dualizing and lifting to spectra gives a cofiber (=fiber) sequence

Σ∞BCp → Σ∞BS1 → (BS1)∧.

Homming from M then determines a fiber (=cofiber) sequence

MBCp ←MBS1 ←M (BS1)∧ .

Because M is a MU -module, there is a Thom isomorphism M (BS1)∧ ∼= Σ−2MBS1
. Note

that

(BS1)∧ = cofib(S(V )→ D(V ))

and D(V ) ∼= CP∞. Finally, the map

Σ−2MBS1 →MBCp

can be identified with the map M [[t]]→M [[t]] sending 1 to the Euler characteristic p[t].
This proves

MhS1/[p](t) = MhS1 ⊗
MUhS1 MUhCp →MhCp
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is an equivalence, and the analogous statement with tS1 and tCp in place of hS1 and
tCp, respectively, follows from inverting t.

□

We finish by using the black-boxed Lemma 7

Lemma 7. [HRW, Section 6] We have that v2 is a unit multiple of [p](t).

Finally knowing that v2 = cp[t](t) for a unit c allows us to conclude that((
π∗THH(ℓ/MU⊗s+1)tS

1
)
/(p, v1)

)
/([p](t)) =

((
π∗THH(ℓ/MU⊗s+1)tS

1
)
/(p, v1)

)
/(cv2)

=
((

π∗THH(ℓ/MU⊗s+1)tS
1
)
/(p, v1)

)
/(v2)

=
((

π∗THH(ℓ/MU⊗s+1)tS
1
)
/(p, v1, v2)

)
as desired. □

Now that we know the Frobenius, we are ready for the syntomic cohomology calculation.

Theorem 8. [HRW, Theorem 6.0.4] The mod (p, v1, v2) syntomic cohomology of ℓ is a finite
Fp-vector space. As a vector space, it is isomorphic to

(1) Fp{1}, in Adams weight 0 and degree 0.
(2) Fp{∂, tdλ1, t

dpλ2 | 0 ≤ d < p}, in Adams weight 1. Here, |∂| = −1, |tdλ1| = 2p−2d−
1, and |tdpλ2| = 2p2 − 2dp− 1.

(3) Fp{tdλ1λ2, t
dpλ1λ2, ∂λ1, ∂λ2 | 0 ≤ d < p}, in Adams weight 2. Here, |tdλ1λ2| =

2p2− 2p− 2d− 2, |tdpλ1λ2| = 2p2− 2p− 2dp− 2, |∂λ1| = 2p− 2, and |∂λ2| = 2p2− 2.
(4) Fp{∂λ1λ2}, in Adams weight 3 and degree 2p2 + 2p− 3.

The mod (2, v1, v2)-syntomic cohomology of ℓ = ku

−1 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

1

∂ λ1t λ1

λ2t
2

λ2

λ1λ2t λ1λ2∂λ1 ∂λ2

λ1λ2t
2

∂λ1λ2

Proof. By definition of TC, we have the fiber sequence

TC(ℓ)→ TC−(ℓ)
φ−can−−−→ TP(ℓ),

and since the motivic filtration preserving the fiber sequence, we have a fiber sequence

gr∗motTC(ℓ)→ gr∗motTC
−(ℓ)

φ−can−−−→ grmot ∗TP(ℓ).
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By taking appropriate reductions, we have the induced fiber sequence

gr∗motTC(ℓ)/(p, v1, v2)→ gr∗motTC
−(ℓ)/(p, v1, v2)

φ−can−−−→ gr∗motTP(ℓ)/(p, v1, v2).

which induces a long exact sequence

· · · → gr∗−1
mot TP(ℓ)/(p, v1, v2)→ gr∗motTC(ℓ)/(p, v1, v2)

→ gr∗motTC
−(ℓ)/(p, v1, v2)

φ−can−−−→ gr∗motTP(ℓ)/(p, v1, v2)→ · · ·
of groups which we will use to deduce the result. The map

gr∗motTC
−(ℓ)/(p, v1, v2)

φ−can−−−→ gr∗motTP(ℓ)/(p, v1, v2)

is given by the rule that classes of the form λe1
1 λe2

2 tkp
2 ∈ gr∗motTC

−(ℓ)/(p, v1, v2) go to

−λe1
1 λe2

2 tkp
2 ∈ gr∗motTP(ℓ)/(p, v1, v2), classes of the form λe1

1 λe2
2 tµk ∈ gr∗motTC

−(ℓ)/(p, v1, v2)

go to a F×
p -multiple of λe1

1 λe2
2 t−kp2 ∈ gr∗motTP(ℓ)/(p, v1, v2), and all other classes go to zero.

The kernel of this map gives the terms in the syntomic cohomology calculation that don’t
have λi’s in them. The cokernel is given by

gr∗motTP(ℓ)/(p, v1, v2)

im(φ− can)
∼=

Fp[t
p2 ]⊗ Λ(λ1, λ2)

Fp[tp
2 ]

∼= Λ(λ1, λ2).

This contributes the basis elements with a ∂ coming from the degree shift.
□

Now we discuss three consequences of the syntomic cohomology calculation. The first is
the following.

Proposition 9. [HRW, Theorem 6.0.4] The v2-Bockstein spectral sequence (converging to
the mod (p, v1) syntomic cohomology of ℓ as an Fp[v2]-module) collapses with no differentials.
As a consequence, we’ve calculated gr∗mot (TC(ℓ)) /(p, v1) as an Fp[v2]-vector space.

Proof. Recall that the v2-Bockstein spectral sequence (converging to the mod (p, v1) syntomic
cohomology of ℓ as an Fp[v2]-module) has signature

π∗,∗ ((gr
∗
mot (TC(ℓ)) /(p, v1)) /(v2)) [v2]→ (gr∗mot (TC(ℓ)) /(p, v1))

which can be rewritten as

π∗,∗ (gr
∗
mot (TC(ℓ)) /(p, v1, v2)) [v2]→ (gr∗mot (TC(ℓ)) /(p, v1))

due to regularity. Since we know gr∗mot (TC(ℓ)) /(p, v1, v2) and that |v2| = (2p2− 2, 0) we
have the following description of the E1 page of the spectral sequence.

We have π∗,∗ (gr
∗
mot (TC(ℓ)) /(p, v1, v2)) [v2] as an Fp vector space isomorphic to

(1) Fp{ve2 | 0 ≤ d < p, e ≥ 0}, in Adams weight 0 and degree (2p2 − p)e.
(2) Fp{ve2∂, ve2tdλ1, v

e
2t

dpλ2 | 0 ≤ d < p, e ≥ 0}, in Adams weight 1. Here, |∂| = −1,
|tdλ1| = 2p− 2d− 1, and |tdpλ2| = 2p2 − 2dp− 1.

(3) Fp{ve2tdλ1λ2, v
e
2t

dpλ1λ2, v
e
2∂λ1, v

e
2∂λ2 | 0 ≤ d < p, e ≥ 0}, in Adams weight 2. Here,

|tdλ1λ2| = 2p2 − 2p − 2d − 2, |tdpλ1λ2| = 2p2 − 2p − 2dp − 2, |∂λ1| = 2p − 2, and
|∂λ2| = 2p2 − 2.

(4) Fp{ve2∂λ1λ2, e ≥ 0}, in Adams weight 3 and degree 2p2 + 2p− 3.
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We argue that there are no non-trivial differentials. In a Bockstein spectral sequence, the
differentials are trigraded. The differentials increase Adams weight by 1 and must increase
v2-degree by a positive amount. Differentials increase v2-degree by at least 1, Adams weight
by 1, and degree by −1. Any differential increasing v2-degree by b ≥ 1 maps va2x1 to va+2

2 x2

for some a ≥ 0 and x1, x2 having no factor of v2 where deg(va+b
2 x2)− deg(va2x1) = −1. This

implies deg(x2)−deg(x1) = b(2p2−2)−1. Thus b < 2 since the maximum deg(x2)−deg(x1)
that can occur is 2p2− 2. Since deg(x2)− deg(x1) = 2p2− 1 cannot occur, b cannot be 1, so
we conclude that all differentials collapse. □

The E1-page of the v2-Bockstein spectral sequence for p = 2

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

1

∂ λ1t λ1

λ2t
2

v2∂

v2

λ2

v1λ1t

λ1λ2t

v2λ1

v2λ2t
2

λ1λ2∂λ1 ∂λ2

λ1λ2t
2

∂λ1λ2

v22∂

v22

Now that we’ve stated the first observation, we state the second.

Proposition 10. The syntomic cohomology calculation exhibits something that looks like
Tate duality.

Now that we’ve stated the first observation, we state the third.

Proposition 11. [HRW, Corollary 6.6.3] For any prime p ≥ 2 and type 3 p-local finite
complex F , F∗TC(ℓ) is finite.

Proof. Let C denote the category of p-complete finite spectra V such that V∗TC(ℓ) is finite.
See that C is a thick subcategory of p-complete finite spectra: it contains 0 because 0∗TC(ℓ)
is finite, it’s closed under fibers and cofibers by observing the long exact sequence associated
to a fiber or cofiber sequence, and retraction preserves tensoring with TC(ℓ) thus will preserve
finiteness.

By the Thick Subcategory Theorem, C must be C≥n for some n ≥ 0, the category
of finite p-local spectra of type ≥ n. Fix (i, j, k) so that the generalized Moore spectrum
V := S/(pi, vj1, vk2) of type 3. If we show that V ∈ C≥n, it follows that k ≤ 3 in which case
C≥3 ⊂ C, that is, the proposition would be proven.

We show that V∗TC(ℓ) is finite for V the type 3 complex S/(pi, vj1, vk2). Note that (i, j, k)
have been picked so that there is a motivic spectral sequence with signature

gr⋆mot(TC(ℓ))/(p
i, vj1, v

k
2)⇒ V∗TC(ℓ)

.
Now we see gr⋆mot(TC(ℓ))/(p

i, vj1, v
k
2) may be resolved by finitely many copies of gr⋆mot(TC(ℓ))/(p, v1, v2)

in the following way. We inductively, for 1 ≤ m < i, exhibit the cofiber sequence
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gr⋆mot(TC(ℓ))/(p
m, v1, v2)

p−→ gr⋆mot(TC(ℓ))/(p
m, v1, v2)→ gr⋆mot(TC(ℓ))/(p

m+1, v1, v2)

giving a cofiber sequence

S/(pm, v1, v2)∗TC(ℓ)→ S/(pm, v1, v2)∗TC(ℓ)→ S/(pm+1, v1, v2)∗TC(ℓ)

where the first two terms are finite by inductive hypothesis so that the final term is also
finite. Repeating this process for the powers of v1 and v2 completes the proof.

□

Finally we discuss the following corollary of the Proposition 11.

Corollary 12. [HRW, Theorem 6.6.4] The Litchenbaum-Quillen conjecture holds for TC(ℓ),
that is,

TC(ℓ)(p) → Lf
2TC(ℓ)(p)

is a π∗-iso for ∗ ≫ 0.

Proof. Recall that the Lf
2 -localization map S→ Lf

2S fits into a cofiber sequence

C → S→ Lf
2S

Such that C is a filtered colimit of objects of C≥3. In the last Proposition 11, we proved
that the objects C≥3 coincides with the spectra v such that V∗TC(ℓ) is finite, thus C itself
has the property that C∗TC(ℓ) is finite. Applying TC(ℓ)∗ gives the fiber sequence

TC(ℓ)→ Lf
2TC(ℓ)→ TC(ℓ)∗V.

whose long exact sequence has TC(ℓ) → Lf
2TC(ℓ) must be an equivalence in degrees

greater the highest degree appearing in TC(ℓ)∗V . □
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