LECTURE 15: K(1)-LOCAL POWER OPERATIONS
PRESTON CRANFORD

ABSTRACT. This document is talk notes for Talk 15 in European Talbot 2025. We explain
power operations in the K (1)-local setting and McClure’s theorem.

Fix a prime p for the whole talk.

Power operations can be difficult to understand. It may be easier to study them in
monochromatic settings such as in the K(n)-local or T'(n)-local categories. In this talk we
calculate the K (1)-local power operations. The calculation is known as McClure’s theorem
and a form of it is stated in Theorem 1.

Theorem 1 (McClure’s Theorem, [BMMS]). The homotopy ring of the p-completed free

algebra ]F‘lree]?(‘;jA (aj)ﬁ n K UpA-local commutative rings on a class in degree 0 admits a d-ring
P

structure so that it is a free p-completed 6-ring on a class in degree 0.

We explain why McClure’s theorem calculates power operations in the K (1)-local cate-
gory. From [Eur25, Talk 9] we know power operations in an O-monoidal oco-category Modg
of modules over a spectrum R are calculated by the homotopy groups of the free algebra
Freeg(x) on a set with one element in degree 0. Thus the homotopy ring of p-completed

free algebra Freeﬁaé (x) computes the power operations in the E., monoidal category of
KU -modules.

What the stated form of McClure’s Theorem does is calculates power operations in the
category of KUQ—modules as opposed to power operations in the K (1)-local category. The
difference is a matter of p-Bockstein considerations K (1)-locally as explained later.

Now that we've explained how McClure’s Theorem is used to compute power operations
on K (1)-local spectra, we comment on history and literature on it in Remark 2.

Remark 2. McClure’s theorem is due to McClure in [BMMS, Chapter IX]. There is some
discussion on the theorem by Hopkins in [Hop| and by Goerss-Hopkins in [HG, Section 2.2].

In this talk we present a proof taught to the speaker by Ishan Levy, therefore what is good
and correct should be attributed to Levy, and what is bad or incorrect should be attributed to
the speaker.

We begin discussing a proof of McClure’s theorem by discussing d-rings. In [Eur25, Talk
9] we learned that a J-ring is extra structure put on a commutative ring, and in the case
of R being p-torsion free, it has the following two equivalent definitions: (1) the data of R
and a map of sets § : R — R satisfying some equations or (2) the data of R and a ring
homomorphism 1 lifting the Frobenius on R. Furthermore, for R p-torsion free, there is a
bijection between choices of § and lift 1(x) = 2P + pd(x) of the Frobenius map zP. Now that
we’'ve recalled material about d-rings, we discuss what the free p-complete -ring on a set
with one element looks like in Proposition 3.

Proposition 3. The free p-complete d-ring on a set with one element is the commutative
ring Zp|wo, 1, Ta, . . .| with §-structure given by 6(x;) = iy,
1
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Proof. Firstly we show that this is indeed a p-complete d-ring: it is p-torsion free, so it
suffices to see that the associated map ¢ with p(x;) = ¥ + px;41 is a ring homomorphism
that lifts the Frobenius. We’ve specified ¢ on the algebraically independent generators of
the ring, so ¢ is a ring homomorphism. Also 2! + pz; 11 mod p is = so ¢ lifts Frobenius.

It remains to check the universal property of being free: we need to show that given a
p-complete d-ring R and a choice of » € R that there exists a unique map f of p-complete 6-

rings 7)) [xo, 21, T, . . . | Iy R such that f(zo) = r. Considering that f(z¢) = r, the relations
5(f(z;)) = f(6(x;)) = f(xir1) ensure that the map f(z;) = 6'(r) makes f a map of p-
complete d-rings and is unique. 0

Now that we’ve discussed the free p-completed J-ring, we will begin studying the p-
completed free KU -algebra on a set with one element. Recall from [Eur25, Talk 9] we
recall the following formula for the free object on a set with n elements in a O-monoidal
oo-category of modules over a commutative ring spectrum R is

Freeg(arl, ceyTp) @(O(n) (SO))%W

Applying this formula for (z1,...,z,) = (z), R = KU}, O = E,, and p-completing gives
us

)= )0 5

n>0

Freexyy ()

We will begin studying the free algebra in low n-ary parts. Firstly we recall some facts
about group cohomology. In the following we take a group G and H a normal subgroup of
G such that [H : G] < co. We also fix M a BG-module.

e There is a map H*(BG; M) = H*(BH; M) called the restriction given by pushfor-
ward.

e There is a map H*(BH; M) % H*(BG; M) called the transfer given by viewing
BG — BH as a finite covering map and sending a cocycle f to the map that sends
a cell o’ to the sum of all f(o’) for the cells ¢’ in the fiber over the cell o.

e The double coset formula is the claim that resotr is the multiplicaiton by [G : H]|
map on H*(BG; M).

e For M =T, and [G : H] is coprime to p there is an isomorphism onto the G-invariants

H.(BG;F,) = H.(BH;F,)c/n-

where G acts trivially on F,. The inclusion of G-invariants induces an inclusion

H.(BG;F,) L(BH;F,)a/u

\ [

H,(BH;F,).

Before we begin our calculations in low n-ary degrees, we remark that we will be per-
forming group cohomology calculations in KU/p coefficients. We do this because KU /p is
better behaved than KUJ: KU/p is "field-like” K(1)-locally. This is because K (1) is the

mod p Adams summand thus is a summand of KU/p. In particular, they share the same
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Bousfield class, so K (1)-locally, KU/p enjoys the property that K (1) has of being field-like
in that modules over it are free as explained in [Eur25, Talk 5].

After computing the group cohomologies B, XY/P| we will have to use this to calculate
the group homologies KUQ ®BY,. We do this in two steps. The first step is converting
between cohomology and homology. Because KU/p is a field, (co)homology over it is free
thus is determined by its rank over KU/p. It must be that cohomology and homology over
KU/p give the same rank.

The second step is to convert from KU /p-homology to KU[A)—homology. Due to a niceness
condition (KU /p® BY.,, being even), this conversion is doable. We record this in the following
Lemma 4.

Lemma 4. For X a space such that KU/p @ BY,, is even, we have that
KUS RX = KU;\ QKU /p (KU/p(X)X)

Proof. We consider the p-Bockstein sequence

0= KU)@X & KU, ®X - KU /p@ X =0
and its associated p-Bockstein spectral sequence with signature

H?(KU /p @ X;my(KU))) = HP (KU, @X).
We assumed KU/p ® B, is even. We also know 7,(KU)) = Z[3*] with deg(5)=2 so

KUQ is even. Thus the Es-page is concentrated in even bidegrees, all differentials collapse,
and the spectral sequence collapses to give the claim of the lemma. O

We've set up enough pre-requisities to compute KUQ ®(BX,) for n < p in Proposition
5.

Proposition 5. For n < p we have K(1)-locally that

KUZA, ® BY,, = KUI’,\
so that

(KU) ® (B,))) = KU

Proof. We will proceed with our first transfer argument. Consider the trivial subgroup
* C Y,. By the double coset formula, resotr is multiplication by n! on H*(BX; KU/p).
Since n < p, n! is coprime to p, so res o tr is the identity on H*(BXy; KU/p). The composition
resotr factors through H*(Bx; KU/p) = KU/p, therefore H*(BY; KU/p) = KU/p. By
Lemma 4, this implies the claimed statement. 0J

We’ve learned so far that there is only one power operation in n-ary parts n < p, and
we’ve discussed nothing about a J-ring structure. Recalling that -ring structure is a lift of
Frobenius, the non-trivial data of a d-structure to appear in n-ary degree n = p. Indeed,
this will happen as observed in Proposition 6.

Proposition 6. We have K (1)-locally that

€,tr

KUQ@BEP s KUI/,\GBKU;,\
1s an equivalence for some maps € and tr so that
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(KU) ® (BX,))) = KUy & KU, .
We will see that we can think of the d-structure as coming from the transfer. To prove
Proposition 6, we will perform transfer arguments. We have that ¢}, C X, is a maximal

p-sylow subgroup, so we are interested in understanding BYEUP This is calculated by the
following Lemma 7.

Lemma 7. We have that

H*(BCy; KU[p) = Fplt] /(") @ Fp[ﬂi]
with deg(t) = 1. This imples BSEYP s a rank p module over KU/p.

Proof. To compute we use the Atiyah—Hirzebruch spectral sequence with signature

HP(BCy; my(KU/p)) = mpsg " (BCy; KU/ p).
We recall that H*(BCp;F,) = F,[t] ® Ag,(e) with deg(t) = 2 and deg(e) = 1. For
degree reasons, the only possible non-trivial differential in the Es page is de. We will show
de = [p|r(t) for F' denoting the formal group law associated to KU/p so that

de = [p|p(t) = vit? = PP
giving the claim. We consider the fiber sequence

BC, — BS' % BS',
Continuing the sequence to the left gives us QBS?! as the fiber of BC,, — BS!, and we
know QBS! = St thus we have a spherical fibration

Ss' - BC, — BS".

The associated Gysin sequence tells us that de is given by the Euler class. The Euler
class is induced by pulling t € BS! back by BS' £ BS! and thus is given by [p]r(t) as
desired. n

From the above Lemma 7, the subgroup C, C X, allows up to upperbound the rank of

BYE Ulp as being p. We will build upon the above calculation.

Now consider the subgroup C, x Aut(C,) in ¥,. It has cardinality p(p — 1) and is once
again a subgroup of index coprime to p. To make sense of C, x Aut(C,), we specify the
action of Aut(C,) on C,, so we declare it to be the obvious one and not denote it in the
notation of the semi-direct product.

Lemma 8. We have
H"(B(Cy x Aut(Cy)); KU/p) = F,[t"']/(t"™1)%) @ F,[8*].
This implies B(C, x Aut(C,))XY/? is a rank 2 module over KU /p.

Here are two more facts about group cohomology we recall now before the proof.

e For M a BG module we have that H°(BG; M) is the fixed points M"B¢,
e For |G| < oo and is invertible in M we have H*(BG; M) = 0 for % > 0.

Now we state a proof of Lemma 8.
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Proof. We seck to leverage our knowledge of H*(BC,; KU/p), so we consider the exact
sequence

0 — BC, — B(C, x Aut(C,)) = B Aut(C,) = 0

and it’s associated Lyndon-Hochschild—Serre spectral sequence with signature

HP(B Awt(Cy); HY(BCyi KU/p)) = HPM(B(Cy 0 Aut(Cy)); KU/p).
When p = 2, Aut(C,) is trivial, and the desired statement is true. We assume p > 2

onwards.
Because p > 2, Aut(C,) has magnitude coprime to p, thus

HP(B Aut(Cy); Hq((BCp§ KU/p))

vanishes when p > 0. We are therefore only interested in the line

By = H(B Aut(C,); HU((BCy KU/p)) = H((BCy KU /p))" ().

There are no non-trivial differentials, to it remains only to study the fixed points calcu-
lation. The action of Aut(C,) on C, is given by exponentiation: pu™ € Aut(C,) = C,_; for p
a primitive (p — 1) root of unity sends ¢ to p"t". The fixed points are exactly when n = 0 or
n=p-—1. 0

Now that we’ve upper bounded rank 2, we have to show that KUQ ® B, is not of rank
1, finally proving Proposition 6.

Proof. We recall from [Eur25, Talk 8] that the K(n)-local categories are oo-semiadditive.
This implies Tate vanishing for the K (1)-local category so that

Kthp — KUhEP

is an equivalence. The proof strategy going forward is to use Tate vanishing to distinguish
two summands in KUI/,\ ® B, via the double-coset formula. We consider the ¢ map from
KU /p to KU /pys, given by taking homotopy orbits, and we denote Tr the transfer map
(KU/p)ns, — KU,. The diagram below depicts the setup.

(KU/p)s, == (KU/p)"™

KU/p KU/p

By an equivariant analogue of the double-coset formula, we have that the composition
Troe is p! which is 0 mod p. If KU;\ ® BY, were of rank 1, then Tr oe would have been the
identity, but it isn’t, so KU} ® BY, is not of rank 1. O

What we’ve shown in proving Proposition 6 the following equivalence:
A E,tI‘ A A
KU, ®BY%, — KU, & KU,
We call the power operation coming from e by the name z and the power operation
coming from transfer by §(z).
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We will begin discussing a d-structure on the Freegys (z),. We will do so by stating an
endomorphism ¢ of sets on FreeKUQ (x)g and show that v is indeed a ring homomorphism.

A map of sets ¢ is supposed to be a lift of Frobenius, thus we will find it by picking a power
operation in the p-ary degree. We declare it to be (1,0) in KU;,\ ®BY, LN KU;A, &) KUQ. In
other words, we pick the operation such that €(y)) = 1 and tr(y)) = 0. We need to show it

preserves addition and multiplication.

Remark 9. One may wonder about the approach of instead showing the map of sets § satisfies
the two relations to show that it gives a d-ring structure. This requires understanding €(d(x))
and tr(6(x)). To know €(d(x)), we look at the equation

U(x) = 2" + pi(x)
and apply € to learn

1 = €(2”) + pe(d(x)).
By definition of €, e(xP) = 1, so solving for ¢(d(x)) gives €(d(x)) = 0. To understand
tr(d(z)), we now apply apply tr to

U(z) = a¥ + pi(z)
to get

0 = tr(a?) + ptr(d(z)).

A double-coset argument shows tr(zP) = p!, thus solving for tr(é(z)) gives tr(d(x)) =
1

U
Firstly we will show that for z,y € m,(Freexy (2)) that ¢ (z) +¢¥(y) = ¢ (z +y). To do

this, we will need to understand the free algebra FreeKUQ (x,y) generated by two elements.
From the formula we’ve seen before, we have that

® n
Freexur (2,y) = @DKU) @ KUL) o
n>0
The relation we seek to show is in p-ary degree of FreeKUQ(m,y), so we study more

generally what the n-ary part of Freexys (2, y) looks like in the following Lemma 10

Lemma 10. .
QguAn
(KUy @ KUp) e ? = @D KU) @B(%; X %yy)
n=0
Proof. First we must calculate the homotopy orbits of (KU ®KU£)®KU$H. The action of

Y, permutes the p pairs KUQ ® KUQ. For convenience we label the first and second copies
x and y respectively. On the level of sets, the set being acted upon looks like the set

KU {z, y}"
with 2" elements. An element of the set looks like KU;\(x, T, Y, %, Y, ... ), asequence of n

elements of {z,y}. The action of ¥, preserves the number of z’s in a sequence, so there must
be at least n + 1 orbits corresponding to the possible number (0,1,...,n — 1,n) number of



LECTURE 15: K(1)-LOCAL POWER OPERATIONS 7

x’s in a sequence. Since ¥, acts transitively any subset of sequences with a fixed amount of
x’s, this concludes our calculation of the orbits.

It remains to justify the stabilizer calculation. On an orbit of sequences with i x’s and
n — i 1y's, the stabilizer on the 2’s is given by ¥; and the stabilizer on the y's is given by
Y- O

Now that we have some handle on the p-ary part of the free algebra on two elements, we
can describe what we want. By the universal property of free algebras, to pick the element
x+yin FreeKUQ(a:, y) is the same as picking a map

KU} (2) — Freexuys (2, y).

We define ¢ (z) + ¢ (y) € Freexuy(z,y) to be the image of ¢(x) +1(y) € Freexuy,(z) by
the above inclusion. At last, we now have description of ¥ (z) + v (y) and ¥ (z + y) as power
operations living in the p-ary part of FreeKUg (x,y). We begin.

Lemma 11. We have that ¢(x) + ¢ (y) = ¢(z +y) in Freegy (z,y).
Proof. From the prior Lemma 10 we see that the p-ary part of Freegu (x,y) is given by

p—1
2 KU) @B(%,) ® @ 2'y" ' KU) @B(E; x 5,—) ® ¢ KU) @ B(5,).
i=1
Firstly we show that ¢ (z) + ¢ (y) = ¢ (z + y) after applying transfer and look at the
middle terms. Consider the trivial subgroup * C ¥; x 3,_;. Since |3; x ¥,_;| =il(p — 1)! is
coprime to p, the double coset formula once again tells us that

2P KU Jp @ B(S; X Spy) — 2y " KU /p ® Bx = 2y? KU /p

is an equivalence. This shows that tr(¢(z + y) must be 0 on the mixed terms. Since
tr(¢)) = 0, we have that

tr(y(z) + () = tr((z)) + tr(d(y)) =04+0=0

It remains to look at the unmixed terms given by 2 and y?. We will study these one at
a time beginning with the 2P term. We consider the map

Freexu (z,y) — Freexus (2)

given by mapping the elements = to z and y to 0. The induced map on p-ary parts
gives a projection of the € map which we call €,. We see €,(z) = 1 and €,(y) = 0. By
symmetry we can swap x,y and rerun the argument. Finally we have € = €, + ¢, which
shows (¢ (z) +1¥(y)) = 1 as desired. O

Now that we’'ve shown additivity in Lemma 11, we show multiplicativity. The power
operations ¥ (xy) and ¥ (z)1(y) live in 2p-ary degree. We see z and y live in degree 1 so zy
lives in degree 2, and applying ¢ makes it live in degree 2p. Likewise the operations v (z)
and 1 (y) live in degree p each, and their product lives in degree 2p.

Lemma 12. We have that ¢(x)y(y) = ¢(xy) in Freexy, (z,y).
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Proof. The operations ¢(x)Y(y) = 1(xy) are both of (z,y)-degree (p,p), so that is the only
part of the 2p-ary degree part of FreeKUg (x,y) we need to look at. That is
zPy? Freexuy, RB(X, X X,).

One can go through a very similar argument before, by considering the subgroup

(Cp x Aut(Cy)) x Cp, x Aut(Cp) C X, X X,
and using that KU /p has a Kunneth formula, we get the following equivalence:

KU;\ ®B(2p % Zp) eRe,tr Qe,e@tr,tr @ tr (KU;\)€B4
As before tr(¢)) = 0 makes it so that we only need to see that ¥ (z)i(y) = ¥ (zy) on the
€ ® € part.
To study the € ® € part, we again project onto say the x part first by considering the
map

Freegyp (2, y) — Freexun (2)

induced by setting x — z and y — 0. This again gives a (¢ ® €), component that is 1 on
x and 0 on y. We get the same things with z,y swapped, and we get the decomposition

ERe=(e®e), + (e®e)y
again giving ¥ (x)Y(y) = ¥ (xy) as desired. O
Now that we’ve proven Lemma 11 and Lemma 12, we conclude that v is a ring homo-
morphism so that we have finished constructing a d-ring structure on . (Freexyy ().

It only remains to exhibit its universal property: that as a p-complete d-ring, it’s free on
one object. Firstly we consider the map

Frees(z), — Freexun (y),

given by sending = to y. We can do this because FreeKUQ (y); is considered a p-complete
0-ring and we use the universal property of Free(;(x)]/o\. To show this is an equivalence, it
suffices to show that this map of J-rings induces an isomorphism of underlying rings. We do
this by showing the underlying map of rings is a surjection and an injection of sets.

We begin by showing the surjectivity. What we do is show that it is surjective onto each
n-ary part. Note that we've already done this for the n-ary degrees n < p: for n < p, it is
surjected onto by Z/{z"}, and in p-ary degree it is surjected onto by Z){x?,d(x)}.

Before we prove the surjectivity claim, we prove it in 2p-ary degree in Example 13 as an
easier to understand case than the general proof.

Example 13. We show
Frees(z) — FI"GGKUQ (y);\

surjects onto the 2p-ary part.

Proof. The 2p-ary part of Freexyn(y), is given by

(KU, (BXa)), -
Consider the following subgroup



LECTURE 15: K(1)-LOCAL POWER OPERATIONS 9

((Cp x Aut(C))) x (Cp x Aut(C,))) x Cy C Xy,

where the outermost semidirect product with C5 acts by permuting the two factors on
either side of the single direct product taken.

Note that the maximum power of p appearing in |[Xs,| = (2p)! is p* = 8 when p = 2 and
is p? when p?, thus the subgroup constructed has index in ¥, coprime to p. This implies
that there is an injection

H*(BXs,, KU /p) = H*(B ((C, x Aut(C,)) x (C, x Aut(C,))) x Cy; KU /p)

so it suffices to show that the composition

Frees(z) — KU ® BYy, — KU @B ((C), x Aut(C,)) x (Cp x Aut(C))) x Co

is surjective.

We’ve seen that the cohomology of one of the semi-direct products has rank 2, so taking
the direct product gives rank 4 by the Kunneth formula for KU /p. Finally, we’ve also seen
that the outermost semidirect produt gives fixed points, and this results in the identification
of #P§(z) and 6(z)xP, giving rank 3. This is surjected onto to by 2%, xP4(z), and 6(z)*>. O

Now that we’ve seen Example 13, we now move onto the full Proposition 14.

Proposition 14. We have

Frees(z) — Free g (y);\
18 surjective.

Proof. We show this at each n-ary part. We recall how to construct a p-Sylow subgroup of
Y. Write n in base p as Zf:o a;p’ with 0 < a; < p and k minimal. A p-Sylow subgroup is

given by
k  a;
H H Xt o Ch.

=0 j=0
This implies that

TT T 0(Cy 5 Aut(Cy)) » C)

i=0 j=0
is a subgroup of ¥, of index coprime to p. We once again proceed with the strategy of
showing

Frees(z) — KU ® BY,,

k  a;
= KUp @B [ [ [[(25i26(Cy % Aut(C,)) x Ca,)

=0 j=0
is surjective. The idea is that each
Xim—0(Cp X Aut(Cy)
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corresponds in group cohomology with all the words of length a; with letters 27" and
6% (x), and then the outermost semi-direct producting with C,, in

(Mo (Cp > Aut(Cy)) x Co,)

ensures, in group cohomology, that the words

2O (@), R () T T (@), 8 ()2

are identified. We see that everything is expressible in terms of  and applying § which

shows surjectivity.
O

It remain to argue injectivity. The idea is to map both free rings into some J-ring R
with a very large homotopy ring, but we also want it’s J-ring structure to be well behaved,
so we will need to introduce some facts about Witt vectors as we will use them to build R.

e A commutative ring A of characteristic p is said to be perfect if the Frobenius x — 2P
is an isomorphism on R.

e To A one can associate the Witt vector ring W (A). There are several ways to define
this, and we state none of them here.

e When A is perfect, characteristic p, and p-torsion free, we have that W (A)/p = A.

e For A perfect, characteristic p, and p-torsion free, Witt vectors W (A) have a unique
d-ring structure coming from the fact that there is a unique map W(A)/p = A —
W(A)/p = A, the Frobenius.

e The §-ring structure in W(A) has the following universal property: for B a J-ring
and f: B — A a map of rings, there exists a unique d-ring map B — W (A) making
the following diagram of ring maps commute:

W (A)

3 .
B—1 4
Now we are prepared to show injectivity in Propositon 15.
Proposition 15. The ring map
Free;(), — Freegyn (v),

18 1njective.
Proof. As said before, idea is to form a commutative KUQ—local ring R with large 7, and a
well-behaved d-ring structure that fits into the diagram

Free;(x) — Freexus (y), — R.
We define

1
R:= (sz[]—j])@w ® KU,



LECTURE 15: K(1)-LOCAL POWER OPERATIONS 11

This gives a commutative KUQ—algebra because the monoidal multiplication on N is
commutative and we’ve tensored with KUI/)\. We've also performed adjoining of 117, which we
recall to be

1
N[-] =colim(NBH NELH N2 ...,
p
We see 7, R is perfect as

so that

W(m.(R))/p = m.(R).
We begin constructing a map Frees(z);) — R. Consider the inclusion

Freeg(x)g — Fl“eea(%)[wfl]g
and note that

1
mo(Frees(2) [, /p) = Zplag™ 2™, .. ]
is perfect. Thus we have

W (Frees () [y ~']})/p = Frees () [y ']}
By the universal property of Witt vectors, associated to the ring map

Frees(z) — m.(R)

is a unique d-ring map making the following diagram commute

W(m.(R))

Frees(x) ——— m.(R).

The diagram

/T

Frees(x);) N Freexun (v),,

commutes because it is induced by the following diagram of set maps:

ZEQGW*

1

{2} C Free;(2)) —— {y} C Freexuy ().
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Finally, since Frees(z)) — Frees(z)[¢™']) is injective, we have that Frees(z)) — R is
injective. We also know that Freexyn (y);\ — R is injective on the level of homotopy groups

as y" goes to y,_1 and applying §’s changes p-adic valuation. 0

Proposition 14 and Proposition 15 together show that the map Frees(x), — Freeky, (),
is an isomorphism of p-complete d-rings on the level of homotopy groups. This concludes
the proof of Theorem 1.
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