
LECTURE 15: K(1)-LOCAL POWER OPERATIONS

PRESTON CRANFORD

Abstract. This document is talk notes for Talk 15 in European Talbot 2025. We explain
power operations in the K(1)-local setting and McClure’s theorem.

Fix a prime p for the whole talk.
Power operations can be difficult to understand. It may be easier to study them in

monochromatic settings such as in the K(n)-local or T (n)-local categories. In this talk we
calculate the K(1)-local power operations. The calculation is known as McClure’s theorem
and a form of it is stated in Theorem 1.

Theorem 1 (McClure’s Theorem, [BMMS]). The homotopy ring of the p-completed free
algebra FreeE∞

KU∧
p
(x)∧p in KU∧

p -local commutative rings on a class in degree 0 admits a δ-ring

structure so that it is a free p-completed δ-ring on a class in degree 0.

We explain why McClure’s theorem calculates power operations in the K(1)-local cate-
gory. From [Eur25, Talk 9] we know power operations in an O-monoidal ∞-category ModR

of modules over a spectrum R are calculated by the homotopy groups of the free algebra
FreeOR(x) on a set with one element in degree 0. Thus the homotopy ring of p-completed
free algebra FreeE∞

KU∧
p
(x) computes the power operations in the E∞ monoidal category of

KU∧
p -modules.
What the stated form of McClure’s Theorem does is calculates power operations in the

category of KU∧
p -modules as opposed to power operations in the K(1)-local category. The

difference is a matter of p-Bockstein considerations K(1)-locally as explained later.
Now that we’ve explained how McClure’s Theorem is used to compute power operations

on K(1)-local spectra, we comment on history and literature on it in Remark 2.

Remark 2. McClure’s theorem is due to McClure in [BMMS, Chapter IX]. There is some
discussion on the theorem by Hopkins in [Hop] and by Goerss-Hopkins in [HG, Section 2.2].

In this talk we present a proof taught to the speaker by Ishan Levy, therefore what is good
and correct should be attributed to Levy, and what is bad or incorrect should be attributed to
the speaker.

We begin discussing a proof of McClure’s theorem by discussing δ-rings. In [Eur25, Talk
9] we learned that a δ-ring is extra structure put on a commutative ring, and in the case
of R being p-torsion free, it has the following two equivalent definitions: (1) the data of R
and a map of sets δ : R → R satisfying some equations or (2) the data of R and a ring
homomorphism ψ lifting the Frobenius on R. Furthermore, for R p-torsion free, there is a
bijection between choices of δ and lift ψ(x) = xp+ pδ(x) of the Frobenius map xp. Now that
we’ve recalled material about δ-rings, we discuss what the free p-complete δ-ring on a set
with one element looks like in Proposition 3.

Proposition 3. The free p-complete δ-ring on a set with one element is the commutative
ring Z∧

p [x0, x1, x2, . . . ] with δ-structure given by δ(xi) = xi+1.
1
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Proof. Firstly we show that this is indeed a p-complete δ-ring: it is p-torsion free, so it
suffices to see that the associated map φ with φ(xi) = xpi + pxi+1 is a ring homomorphism
that lifts the Frobenius. We’ve specified φ on the algebraically independent generators of
the ring, so φ is a ring homomorphism. Also xpi + pxi+1 mod p is xpi so φ lifts Frobenius.

It remains to check the universal property of being free: we need to show that given a
p-complete δ-ring R and a choice of r ∈ R that there exists a unique map f of p-complete δ-

rings Z∧
p [x0, x1, x2, . . . ]

f−→ R such that f(x0) = r. Considering that f(x0) = r, the relations

δ(f(xi)) = f(δ(xi)) = f(xi+1) ensure that the map f(xi) = δi(r) makes f a map of p-
complete δ-rings and is unique. □

Now that we’ve discussed the free p-completed δ-ring, we will begin studying the p-
completed free KU∧

p -algebra on a set with one element. Recall from [Eur25, Talk 9] we
recall the following formula for the free object on a set with n elements in a O-monoidal
∞-category of modules over a commutative ring spectrum R is

FreeOC (x1, . . . , xn)
∼=

⊕
n≥0

(O(n)⊗ (S0))⊗Rn
hΣn

.

Applying this formula for (x1, . . . , xn) = (x), R = KU∧
p , O = E∞ and p-completing gives

us

FreeKU∧
p
(x)∧p

∼=
⊕
n≥0

(KU∧
p ⊗BΣn)

∧
p

We will begin studying the free algebra in low n-ary parts. Firstly we recall some facts
about group cohomology. In the following we take a group G and H a normal subgroup of
G such that [H : G] <∞. We also fix M a BG-module.

• There is a map H∗(BG;M)
res−→ H∗(BH;M) called the restriction given by pushfor-

ward.
• There is a map H∗(BH;M)

tr−→ H∗(BG;M) called the transfer given by viewing
BG → BH as a finite covering map and sending a cocycle f to the map that sends
a cell σ′ to the sum of all f(σ′) for the cells σ′ in the fiber over the cell σ.

• The double coset formula is the claim that res ◦ tr is the multiplicaiton by [G : H]
map on H∗(BG;M).

• ForM = Fp and [G : H] is coprime to p there is an isomorphism onto the G-invariants

H∗(BG;Fp) ∼= H∗(BH;Fp)G/H .

where G acts trivially on Fp. The inclusion of G-invariants induces an inclusion

H∗(BG;Fp) H∗(BH;Fp)G/H

H∗(BH;Fp).

Before we begin our calculations in low n-ary degrees, we remark that we will be per-
forming group cohomology calculations in KU/p coefficients. We do this because KU/p is
better behaved than KU∧

p : KU/p is ”field-like” K(1)-locally. This is because K(1) is the
mod p Adams summand thus is a summand of KU/p. In particular, they share the same
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Bousfield class, so K(1)-locally, KU/p enjoys the property that K(1) has of being field-like
in that modules over it are free as explained in [Eur25, Talk 5].

After computing the group cohomologies BΣn
KU/p, we will have to use this to calculate

the group homologies KU∧
p ⊗BΣn. We do this in two steps. The first step is converting

between cohomology and homology. Because KU/p is a field, (co)homology over it is free
thus is determined by its rank over KU/p. It must be that cohomology and homology over
KU/p give the same rank.

The second step is to convert from KU/p-homology to KU∧
p -homology. Due to a niceness

condition (KU/p⊗BΣn being even), this conversion is doable. We record this in the following
Lemma 4.

Lemma 4. For X a space such that KU/p⊗BΣn is even, we have that

KU∧
p ⊗X ∼= KU∧

p ⊗KU /p (KU /p⊗X)

Proof. We consider the p-Bockstein sequence

0 → KU∧
p ⊗X

p−→ KU∧
p ⊗X → KU /p⊗X → 0

and its associated p-Bockstein spectral sequence with signature

Hp(KU /p⊗X; πq(KU∧
p )) ⇒ Hp+q(KU∧

p ⊗X).

We assumed KU/p⊗ BΣn is even. We also know π∗(KU∧
p )

∼= Z∧
p [β

±] with deg(β)=2 so
KU∧

p is even. Thus the E2-page is concentrated in even bidegrees, all differentials collapse,
and the spectral sequence collapses to give the claim of the lemma. □

We’ve set up enough pre-requisities to compute KU∧
p ⊗(BΣn) for n < p in Proposition

5.

Proposition 5. For n < p we have K(1)-locally that

KU∧
p ⊗BΣn

∼= KU∧
p

so that

(KU∧
p ⊗ (BΣn))

∧
p
∼= KU∧

p .

Proof. We will proceed with our first transfer argument. Consider the trivial subgroup
∗ ⊂ Σn. By the double coset formula, res ◦ tr is multiplication by n! on H∗(BΣk;KU/p).
Since n < p, n! is coprime to p, so res ◦ tr is the identity onH∗(BΣk;KU/p). The composition
res ◦ tr factors through H∗(B∗;KU/p) ∼= KU/p, therefore H∗(BΣk;KU/p) ∼= KU/p. By
Lemma 4, this implies the claimed statement. □

We’ve learned so far that there is only one power operation in n-ary parts n < p, and
we’ve discussed nothing about a δ-ring structure. Recalling that δ-ring structure is a lift of
Frobenius, the non-trivial data of a δ-structure to appear in n-ary degree n = p. Indeed,
this will happen as observed in Proposition 6.

Proposition 6. We have K(1)-locally that

KU∧
p ⊗BΣp

ϵ,tr−−→ KU∧
p ⊕KU∧

p

is an equivalence for some maps ϵ and tr so that
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(KU∧
p ⊗ (BΣn))

∧
p
∼= KU∧

p ⊕KU∧
p .

We will see that we can think of the δ-structure as coming from the transfer. To prove
Proposition 6, we will perform transfer arguments. We have that Cp ⊂ Σp is a maximal

p-sylow subgroup, so we are interested in understanding BΣ
KU/p
n . This is calculated by the

following Lemma 7.

Lemma 7. We have that

H∗(BCp;KU/p) ∼= Fp[t]/(t
p)⊗ Fp[β

±]

with deg(t) = 1. This imples BΣ
KU/p
n is a rank p module over KU/p.

Proof. To compute we use the Atiyah–Hirzebruch spectral sequence with signature

Hp(BCp; πq(KU/p)) ⇒ πp+qH
∗(BCp;KU/p).

We recall that H∗(BCp;Fp) ∼= Fp[t] ⊗ ΛFp(e) with deg(t) = 2 and deg(e) = 1. For
degree reasons, the only possible non-trivial differential in the E2 page is de. We will show
de = [p]F (t) for F denoting the formal group law associated to KU/p so that

de = [p]F (t) = v1t
p = βp−1tp

giving the claim. We consider the fiber sequence

BCp → BS1 p−→ BS1.

Continuing the sequence to the left gives us ΩBS1 as the fiber of BCp → BS1, and we
know ΩBS1 ∼= S1, thus we have a spherical fibration

S1 → BCp → BS1.

The associated Gysin sequence tells us that de is given by the Euler class. The Euler

class is induced by pulling t ∈ BS1 back by BS1 p−→ BS1 and thus is given by [p]F (t) as
desired. □

From the above Lemma 7, the subgroup Cp ⊂ Σp allows up to upperbound the rank of

BΣ
KU/p
n as being p. We will build upon the above calculation.
Now consider the subgroup Cp ⋊ Aut(Cp) in Σp. It has cardinality p(p− 1) and is once

again a subgroup of index coprime to p. To make sense of Cp ⋊ Aut(Cp), we specify the
action of Aut(Cp) on Cp, so we declare it to be the obvious one and not denote it in the
notation of the semi-direct product.

Lemma 8. We have

H∗(B(Cp ⋊ Aut(Cp));KU/p) ∼= Fp[t
p−1]/((tp−1)2)⊗ Fp[β

±].

This implies B(Cp ⋊ Aut(Cp))
KU/p is a rank 2 module over KU/p.

Here are two more facts about group cohomology we recall now before the proof.

• For M a BG module we have that H0(BG;M) is the fixed points MhBG.
• For |G| <∞ and is invertible in M we have H∗(BG;M) = 0 for ∗ > 0.

Now we state a proof of Lemma 8.
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Proof. We seek to leverage our knowledge of H∗(BCp;KU/p), so we consider the exact
sequence

0 → BCp → B(Cp ⋊ Aut(Cp)) → BAut(Cp) → 0

and it’s associated Lyndon–Hochschild–Serre spectral sequence with signature

Hp(BAut(Cp);H
q((BCp;KU/p)) ⇒ Hp+q(B(Cp ⋊ Aut(Cp));KU/p).

When p = 2, Aut(Cp) is trivial, and the desired statement is true. We assume p > 2
onwards.

Because p > 2, Aut(Cp) has magnitude coprime to p, thus

Hp(BAut(Cp);H
q((BCp;KU/p))

vanishes when p > 0. We are therefore only interested in the line

E0,q
2 = H0(BAut(Cp);H

q((BCp;KU/p)) = Hq((BCp;KU/p))
hBAut(Cp).

There are no non-trivial differentials, to it remains only to study the fixed points calcu-
lation. The action of Aut(Cp) on Cp is given by exponentiation: µn ∈ Aut(Cp) ∼= Cp−1 for µ
a primitive (p− 1) root of unity sends t to µntn. The fixed points are exactly when n = 0 or
n = p− 1. □

Now that we’ve upper bounded rank 2, we have to show that KU∧
p ⊗BΣp is not of rank

1, finally proving Proposition 6.

Proof. We recall from [Eur25, Talk 8] that the K(n)-local categories are ∞-semiadditive.
This implies Tate vanishing for the K(1)-local category so that

KUhΣp → KUhΣp

is an equivalence. The proof strategy going forward is to use Tate vanishing to distinguish
two summands in KU∧

p ⊗ BΣp via the double-coset formula. We consider the ϵ map from
KU /p to KU /phΣp given by taking homotopy orbits, and we denote Tr the transfer map
(KU/p)hΣp → KUp. The diagram below depicts the setup.

(KU/p)hΣp (KU/p)hΣp

KU/p KU/p

Nm

Tr
canϵ

By an equivariant analogue of the double-coset formula, we have that the composition
Tr ◦ϵ is p! which is 0 mod p. If KU∧

p ⊗ BΣp were of rank 1, then Tr ◦ϵ would have been the
identity, but it isn’t, so KU∧

p ⊗BΣp is not of rank 1. □

What we’ve shown in proving Proposition 6 the following equivalence:

KU∧
p ⊗BΣp

ϵ,tr−−→ KU∧
p ⊕KU∧

p

We call the power operation coming from ϵ by the name x and the power operation
coming from transfer by δ(x).
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We will begin discussing a δ-structure on the FreeKU∧
p
(x)∧p . We will do so by stating an

endomorphism ψ of sets on FreeKU∧
p
(x)∧p and show that ψ is indeed a ring homomorphism.

A map of sets ψ is supposed to be a lift of Frobenius, thus we will find it by picking a power

operation in the p-ary degree. We declare it to be (1, 0) in KU∧
p ⊗BΣp

ϵ,tr−−→ KU∧
p ⊕KU∧

p . In
other words, we pick the operation such that ϵ(ψ) = 1 and tr(ψ) = 0. We need to show it
preserves addition and multiplication.

Remark 9. One may wonder about the approach of instead showing the map of sets δ satisfies
the two relations to show that it gives a δ-ring structure. This requires understanding ϵ(δ(x))
and tr(δ(x)). To know ϵ(δ(x)), we look at the equation

ψ(x) = xp + pδ(x)

and apply ϵ to learn

1 = ϵ(xp) + pϵ(δ(x)).

By definition of ϵ, ϵ(xp) = 1, so solving for ϵ(δ(x)) gives ϵ(δ(x)) = 0. To understand
tr(δ(x)), we now apply apply tr to

ψ(x) = xp + pδ(x)

to get

0 = tr(xp) + p tr(δ(x)).

A double-coset argument shows tr(xp) = p!, thus solving for tr(δ(x)) gives tr(δ(x)) =
− 1

(p−1)!
.

Firstly we will show that for x, y ∈ π∗(FreeKU∧
p
(z)) that ψ(x) + ψ(y) = ψ(x+ y). To do

this, we will need to understand the free algebra FreeKU∧
p
(x, y) generated by two elements.

From the formula we’ve seen before, we have that

FreeKU∧
p
(x, y) ∼=

⊕
n≥0

(KU∧
p ⊗KU∧

p )
⊗KU∧

p
n

hΣn

The relation we seek to show is in p-ary degree of FreeKU∧
p
(x, y), so we study more

generally what the n-ary part of FreeKU∧
p
(x, y) looks like in the following Lemma 10

Lemma 10.

(KU∧
p ⊗KU∧

p )
⊗KU∧

p
n

hΣn

∼=
n⊕

n=0

KU∧
p ⊗B(Σi × Σp−i)

Proof. First we must calculate the homotopy orbits of (KU∧
p ⊗KU∧

p )
⊗KU∧

p
n
. The action of

Σn permutes the p pairs KU∧
p ⊗KU∧

p . For convenience we label the first and second copies
x and y respectively. On the level of sets, the set being acted upon looks like the set

KU∧
p {x, y}n

with 2n elements. An element of the set looks like KU∧
p (x, x, y, x, y, . . . ), a sequence of n

elements of {x, y}. The action of Σp preserves the number of x’s in a sequence, so there must
be at least n + 1 orbits corresponding to the possible number (0, 1, . . . , n− 1, n) number of
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x’s in a sequence. Since Σp acts transitively any subset of sequences with a fixed amount of
x’s, this concludes our calculation of the orbits.

It remains to justify the stabilizer calculation. On an orbit of sequences with i x′s and
n − i y′s, the stabilizer on the x′s is given by Σi and the stabilizer on the y′s is given by
Σn−i. □

Now that we have some handle on the p-ary part of the free algebra on two elements, we
can describe what we want. By the universal property of free algebras, to pick the element
x+ y in FreeKU∧

p
(x, y) is the same as picking a map

KU∧
p (z) → FreeKU∧

p
(x, y).

We define ψ(x) + ψ(y) ∈ FreeKU∧
p
(x, y) to be the image of ψ(x) + ψ(y) ∈ FreeKU∧

p
(z) by

the above inclusion. At last, we now have description of ψ(x) +ψ(y) and ψ(x+ y) as power
operations living in the p-ary part of FreeKU∧

p
(x, y). We begin.

Lemma 11. We have that ψ(x) + ψ(y) = ψ(x+ y) in FreeKU∧
p
(x, y).

Proof. From the prior Lemma 10 we see that the p-ary part of FreeKU∧
p
(x, y) is given by

xp KU∧
p ⊗B(Σp)⊕

p−1⊕
i=1

xiyp−iKU∧
p ⊗B(Σi × Σp−i)⊕ ypKU∧

p ⊗B(Σp).

Firstly we show that ψ(x) + ψ(y) = ψ(x + y) after applying transfer and look at the
middle terms. Consider the trivial subgroup ∗ ⊂ Σi ×Σp−i. Since |Σi ×Σp−i| = i!(p− 1)! is
coprime to p, the double coset formula once again tells us that

xiyp−i KU /p⊗B(Σi × Σp−i)
Tr−→ xiyp−iKU /p⊗B∗ ∼= xiyp−i KU /p

is an equivalence. This shows that tr(ψ(x + y) must be 0 on the mixed terms. Since
tr(ψ) = 0, we have that

tr(ψ(x) + ψ(y)) = tr(ψ(x)) + tr(ψ(y)) = 0 + 0 = 0

It remains to look at the unmixed terms given by xp and yp. We will study these one at
a time beginning with the xp term. We consider the map

FreeKU∧
p
(x, y) → FreeKU∧

p
(z)

given by mapping the elements x to z and y to 0. The induced map on p-ary parts
gives a projection of the ϵ map which we call ϵx. We see ϵx(x) = 1 and ϵx(y) = 0. By
symmetry we can swap x, y and rerun the argument. Finally we have ϵ = ϵx + ϵy which
shows ϵ(ψ(x) + ψ(y)) = 1 as desired. □

Now that we’ve shown additivity in Lemma 11, we show multiplicativity. The power
operations ψ(xy) and ψ(x)ψ(y) live in 2p-ary degree. We see x and y live in degree 1 so xy
lives in degree 2, and applying ψ makes it live in degree 2p. Likewise the operations ψ(x)
and ψ(y) live in degree p each, and their product lives in degree 2p.

Lemma 12. We have that ψ(x)ψ(y) = ψ(xy) in FreeKU∧
p
(x, y).
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Proof. The operations ψ(x)ψ(y) = ψ(xy) are both of (x, y)-degree (p, p), so that is the only
part of the 2p-ary degree part of FreeKU∧

p
(x, y) we need to look at. That is

xpyp FreeKU∧
p
⊗B(Σp × Σp).

One can go through a very similar argument before, by considering the subgroup

(Cp ⋊ Aut(Cp))× Cp ⋊ Aut(Cp) ⊂ Σp × Σp

and using that KU /p has a Kunneth formula, we get the following equivalence:

KU∧
p ⊗B(Σp × Σp)

ϵ⊗ϵ,tr⊗ϵ,ϵ⊗tr,tr⊗ tr−−−−−−−−−−−→ (KU∧
p )

⊕4.

As before tr(ψ) = 0 makes it so that we only need to see that ψ(x)ψ(y) = ψ(xy) on the
ϵ⊗ ϵ part.

To study the ϵ ⊗ ϵ part, we again project onto say the x part first by considering the
map

FreeKU∧
p
(x, y) → FreeKU∧

p
(z)

induced by setting x→ z and y → 0. This again gives a (ϵ⊗ ϵ)x component that is 1 on
x and 0 on y. We get the same things with x, y swapped, and we get the decomposition

ϵ⊗ ϵ = (ϵ⊗ ϵ)x + (ϵ⊗ ϵ)y

again giving ψ(x)ψ(y) = ψ(xy) as desired. □

Now that we’ve proven Lemma 11 and Lemma 12, we conclude that ψ is a ring homo-
morphism so that we have finished constructing a δ-ring structure on π∗(FreeKU∧

p
(x)).

It only remains to exhibit its universal property: that as a p-complete δ-ring, it’s free on
one object. Firstly we consider the map

Freeδ(x)
∧
p → FreeKU∧

p
(y)∧p

given by sending x to y. We can do this because FreeKU∧
p
(y)∧p is considered a p-complete

δ-ring and we use the universal property of Freeδ(x)
∧
p . To show this is an equivalence, it

suffices to show that this map of δ-rings induces an isomorphism of underlying rings. We do
this by showing the underlying map of rings is a surjection and an injection of sets.

We begin by showing the surjectivity. What we do is show that it is surjective onto each
n-ary part. Note that we’ve already done this for the n-ary degrees n ≤ p: for n < p, it is
surjected onto by Z∧

p {xn}, and in p-ary degree it is surjected onto by Z∧
p {xp, δ(x)}.

Before we prove the surjectivity claim, we prove it in 2p-ary degree in Example 13 as an
easier to understand case than the general proof.

Example 13. We show
Freeδ(x) → FreeKU∧

p
(y)∧p

surjects onto the 2p-ary part.

Proof. The 2p-ary part of FreeKU∧
p
(y)∧p is given by

(KU∧
p (BΣ2p))

∧
p .

Consider the following subgroup
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((Cp ⋊ Aut(Cp))× (Cp ⋊ Aut(Cp)))⋊ C2 ⊂ Σ2p

where the outermost semidirect product with C2 acts by permuting the two factors on
either side of the single direct product taken.

Note that the maximum power of p appearing in |Σ2p| = (2p)! is p3 = 8 when p = 2 and
is p2 when p2, thus the subgroup constructed has index in Σ2p coprime to p. This implies
that there is an injection

H∗(BΣ2p,KU /p) → H∗(B ((Cp ⋊ Aut(Cp))× (Cp ⋊ Aut(Cp)))⋊ C2; KU /p)

so it suffices to show that the composition

Freeδ(x) → KU∧
p ⊗BΣ2p → KU∧

p ⊗B ((Cp ⋊ Aut(Cp))× (Cp ⋊ Aut(Cp)))⋊ C2

is surjective.
We’ve seen that the cohomology of one of the semi-direct products has rank 2, so taking

the direct product gives rank 4 by the Kunneth formula for KU /p. Finally, we’ve also seen
that the outermost semidirect produt gives fixed points, and this results in the identification
of xpδ(x) and δ(x)xp, giving rank 3. This is surjected onto to by x2p, xpδ(x), and δ(x)2. □

Now that we’ve seen Example 13, we now move onto the full Proposition 14.

Proposition 14. We have

Freeδ(x) → FreeKU∧
p
(y)∧p

is surjective.

Proof. We show this at each n-ary part. We recall how to construct a p-Sylow subgroup of
Σn. Write n in base p as

∑k
i=0 aip

i with 0 ≤ ai < p and k minimal. A p-Sylow subgroup is
given by

k∏
i=0

ai∏
j=0

⋊ai
m=0Cp.

This implies that

k∏
i=0

ai∏
j=0

(⋊ai
m=0(Cp ⋊ Aut(Cp))⋊ Cai)

is a subgroup of Σn of index coprime to p. We once again proceed with the strategy of
showing

Freeδ(x) → KU∧
p ⊗BΣn

→ KU∧
p ⊗B

k∏
i=0

ai∏
j=0

(⋊ai
m=0(Cp ⋊ Aut(Cp))⋊ Cai)

is surjective. The idea is that each

⋊ai
m=0(Cp ⋊ Aut(Cp)
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corresponds in group cohomology with all the words of length ai with letters xp
k
and

δk(x), and then the outermost semi-direct producting with Cai in

(⋊ai
m=0(Cp ⋊ Aut(Cp))⋊ Cai)

ensures, in group cohomology, that the words

xp
ka

δk
ai−a

(x), δk(x)xp
ka

δk
ai−a−1

(x), . . . , δk
ai−a

(x)xp
ka

are identified. We see that everything is expressible in terms of x and applying δ which
shows surjectivity.

□

It remain to argue injectivity. The idea is to map both free rings into some δ-ring R
with a very large homotopy ring, but we also want it’s δ-ring structure to be well behaved,
so we will need to introduce some facts about Witt vectors as we will use them to build R.

• A commutative ring A of characteristic p is said to be perfect if the Frobenius x→ xp

is an isomorphism on R.
• To A one can associate the Witt vector ring W (A). There are several ways to define
this, and we state none of them here.

• When A is perfect, characteristic p, and p-torsion free, we have that W (A)/p = A.
• For A perfect, characteristic p, and p-torsion free, Witt vectors W (A) have a unique
δ-ring structure coming from the fact that there is a unique map W (A)/p = A →
W (A)/p = A, the Frobenius.

• The δ-ring structure in W (A) has the following universal property: for B a δ-ring
and f : B → A a map of rings, there exists a unique δ-ring map B → W (A) making
the following diagram of ring maps commute:

W (A)

B A

π∃!

f

.

Now we are prepared to show injectivity in Propositon 15.

Proposition 15. The ring map

Freeδ(x)
∧
p → FreeKU∧

p
(y)∧p

is injective.

Proof. As said before, idea is to form a commutative KU∧
p -local ring R with large π∗ and a

well-behaved δ-ring structure that fits into the diagram

Freeδ(x) → FreeKU∧
p
(y)∧p → R.

We define

R := (Σ∞
+N[

1

p
])⊕∞ ⊗KU∧

p .
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This gives a commutative KU∧
p -algebra because the monoidal multiplication on N is

commutative and we’ve tensored with KU∧
p . We’ve also performed adjoining of 1

p
, which we

recall to be

N[
1

p
] = colim(N p−→ N p−→ N p−→ · · · ).

We see π∗R is perfect as

π∗R ∼= KU∧
p,∗[x

1
p∞
0 , x

1
p∞
1 , . . . ]

so that

W (π∗(R))/p ∼= π∗(R).

We begin constructing a map Freeδ(x)
∧
p → R. Consider the inclusion

Freeδ(x)
∧
p → Freeδ(x)[ψ

−1]∧p

and note that

π∗(Freeδ(x)[ψ
−1]∧p /p)

∼= Z∧
p [x

1
p∞
0 , x

1
p∞
1 , . . . ]

is perfect. Thus we have

W (Freeδ(x)[ψ
−1]∧p )/p

∼= Freeδ(x)[ψ
−1]∧p .

By the universal property of Witt vectors, associated to the ring map

Freeδ(x) → π∗(R)

is a unique δ-ring map making the following diagram commute

W (π∗(R))

Freeδ(x) π∗(R).

π
∃!

f

The diagram

R

Freeδ(x)
∧
p FreeKU∧

p
(y)∧p

f

commutes because it is induced by the following diagram of set maps:

x0 ∈ π∗R

{x} ⊂ Freeδ(x)
∧
p {y} ⊂ FreeKU∧

p
(y)∧p .

f
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Finally, since Freeδ(x)
∧
p → Freeδ(x)[ψ

−1]∧p is injective, we have that Freeδ(x)
∧
p → R is

injective. We also know that FreeKU∧
p
(y)∧p → R is injective on the level of homotopy groups

as yn goes to yn−1 and applying δ’s changes p-adic valuation. □

Proposition 14 and Proposition 15 together show that the map Freeδ(x)
∧
p → FreeKU∧

p
(y)∧p

is an isomorphism of p-complete δ-rings on the level of homotopy groups. This concludes
the proof of Theorem 1.
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